

C. U. SHAH UNIVERSITY, WADHWAN CITY.

Faculty of: Sciences and Life Sciences

Course: Bachelor of Science (Microbiology)

Semester: I

Subject Code: MDC201-1C

Subject Name: Ecosystem And Natural Resources

				Teaching hours/ Week				Evaluation Scheme/ Semester									
Sr · No	Categor	Subject Code	Subject Name	T nours Points Cor		Theory ntinuous and mprehensive Evaluation	uous and ehensive Exams		Tutorial / Internal Assessment		End Semester		Total				
									Ma rks	Marks	Mar ks	Duratio n	Mark s	Duratio n	Mark s	Duratio n	
4	MDC	MDC20 1-1C	Ecosystem and natural resources	3	-	2	5	4	10 10 05	Assignment Quiz Attendance	50	2	25	1	-	-	100

AIM:

- Aware students of the history of microbiology
- Acquaint the basic concept of microbiology as a subject.
- Basic concepts related to sterilization.
- Learn basic laboratory skills for handling glassware

COURSE CONTENTS

Course Outline for Theory

UNIT	COURSE CONTENT						
I	Ecosystem: Concept of ecosystem, structure of ecosystem: inorganic aspect, organic compound, climate regimes, producer, Macro-consumer, Micro-consumer. function of ecosystem: energy cycle, food chains, diversity -interlinkage between organism, biogeochemical cycles. Evolution. producers, consumers and decomposer						
II	Types of ecosystems: terrestrial ecosystem: types of terrestrial ecosystem (forest, grassland, tundra &deser ecosystem) aquatic ecosystem: freshwater & marine ecosystem. Ecological succession. food chain, food web and ecological pyramids.						
III	Natural resources Introduction to natural resources, categories of natural resources: according to continual utility, origin& geographical location of natural resources.	10					
IV	Natural resources and associated problems: Forest resources and associated problems: (Use and over-exploitation, Deforestation, Timber extraction, Mining and its effects on forest, Dams and their effects on forests and tribal people. Water resources and associated problems: (Use and overutilization of water. Floods,	13					

droughts, Conflicts over water, Dams and problems)

Mineral resource and associated problems: Use and exploitation. Environmental effects of extracting and using minerals.

Food resources and associated problems: World food problems, Changes caused by agriculture and over-grazing, Effects of modern agriculture, Fertilizer-pesticide problems, Water logging and salinity.

Energy resources and associated problems: Growing energy needs

Land resources and associated problems: Land degradation, Man-induced landslides, Soil erosion and desertification

Course Outline for Practical

SR. NO	COURSE CONTENT				
	Water Analysis: -				
1	Dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total dissolved (TDS), pH, turbidity, Hardness, heavy metals.				
2	Fuel technology: - proximate analysis of fuel (coal, wood samples), calorific values of solid and liquid fuel.				
3	Rocks and minerals: - identification of various types, forms their characteristics.				
4	Atmosphere Analysis: - Sox, Nox, and suspended particulate matters, carbon dioxide content of a gas sample and climate change.				

TEACHING METHODOLOGY:

- Conventional method (classroom blackboard teaching)
- ICT Techniques
- Teaching through the classroom, laboratory work
- Variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models) Teaching through laboratory work.

LEARNING OUTCOME:

- The course provide knowledge regarding conservation of environment which is very crucial in the present-day scenario.
- Obtain the knowledge about types of ecosystems.
- Understanding the natural resource and associated problem.
- To gain a knowledge about ecosystem.

Arrangement of lectures duration and practical session as per defined credit numbers:

Units		Duration Hrs.)	Cre	ation of edits mbers)	Total Lecture Duration	Credit Calculation
	Theory	Practical	Theory	Practical	Theory+ Practical	Theory+ Practical
Unit – 1	12					
Unit – 2	10	30	3	1	45+30	3+1
Unit – 3	10	30	3			3+1
Unit – 4	13					
TOTAL	45	30	3	1	75	4

Evaluation:

Theory Marks	Practical Marks	Total Marks
75	25	100

Reference Book:

- Singh, D., P.K Chhoker and R.N. Pandey. Plant, Water Analysis: A methods Manual. IARI
- 2. **Helmer, Richard**. **1998.** Water pollution Control: A Guide to the use of water Quality Management Principles. Spon press.
- 3. **Ritter, William F. 2000.** Agriculture Nonpoint Source Pollution: Watershed Management and Hydrology. CRC Press.